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a b s t r a c t 

Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely adopted to investigate functional 

abnormalities in brain diseases. Rs-fMRI data is unsupervised in nature because the psychological and neurologi- 

cal labels are coarse-grained, and no accurate region-wise label is provided along with the complex co-activities of 

multiple regions. To the best of our knowledge, most studies regarding univariate group analysis or multivariate 

pattern recognition for brain disease identification have focused on discovering functional characteristics shared 

across subjects; however, they have paid less attention to individual properties of neural activities that result 

from different symptoms or degrees of abnormality. In this work, we propose a novel framework that can iden- 

tify subjects with early-stage mild cognitive impairment (eMCI) and consider individual variability by learning 

functional relations from automatically selected regions of interest (ROIs) for each subject concurrently. In par- 

ticular, we devise a deep neural network composed of a temporal embedding module, an ROI selection module, 

and a disease-identification module. Notably, the ROI selection module is equipped with a reinforcement learning 

mechanism so it adaptively selects ROIs to facilitate the learning of discriminative feature representations from 

a temporally embedded blood-oxygen-level-dependent signals. Furthermore, our method allows us to capture 

the functional relations of a subject-specific ROI subset through the use of a graph-based neural network. Our 

method considers individual characteristics for diagnosis, as opposed to most conventional methods that identify 

the same biomarkers across subjects within a group. Based on the ADNI cohort, we validate the effectiveness 

of our method by presenting the superior performance of our network in eMCI identification. Furthermore, we 

provide insightful neuroscientific interpretations by analyzing the regions selected for the eMCI classification. 
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. Introduction 

Mild cognitive impairment (MCI) is a symptomatic pre-dementia

tage with a high risk of progressing to Alzheimer’s disease (AD). Treat-

ent of the early stage AD delays its progression; and as such, early de-

ection of MCI has received significant attention for the improvement of

reatment effectiveness. However, an early stages of MCI, with only sub-

le functional and structural changes is nearly undistinguishable from

 normal condition in terms of cognitive function at the clinical level

 Edmonds et al., 2019 ); this makes MCI diagnosis highly difficult. Addi-

ionally, even at the same clinical stage, heterogeneous symptoms such

s cognitive deficits in memory, mild impairments in executive function,
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r those in terms of processing speed ( Delano-Wood et al., 2009 ) may

xist. These symptoms may vary from one person to the other, and can

e caused by a variety of risk factors such as gene and environment.

herefore, it is necessary to consider personalized biomarker anomalies

o better understand the diverse neurophysiological patterns of MCI and

erform accurate diagnosis. 

Resting-state functional magnetic resonance imaging (rs-fMRI),

hich measures the low-frequency spontaneous fluctuations of blood-

xygen-level-dependent (BOLD) signals, is an emerging tool for discov-

ring AD-related biomarkers with abnormal functional changes. In par-

icular, several studies have attempted to classify subjects as AD/MCI pa-

ients or cognitively normal subjects based on the group representative

unctional characteristics of rs-fMRI. In these studies, feature extraction
se Neuroimaging Initiative (ADNI) database ( http://www.loni.ucla.edu/ADNI ). 
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A  

u  

i  

F  
nd/or selection was first performed on the entire brain scale or regions

f interest (ROIs) scale ( Khazaee et al., 2017; Wee et al., 2014 ). In addi-

ion to being employed for dimensionality reduction because of the high

imensional nature of fMRI data, feature extraction and/or selection en-

bles an intuitive analysis and yields better classification performance

n the identification of subjects ( Wang et al., 2013 ). 

From the perspective of feature selection, previous studies ( Chen

t al., 2017; Wee et al., 2014 ) have used group-level statistical method,

uch as the 𝑡 -test, which are applied to the ROIs for selecting task rel-

vant features for classification. In this regard, other machine learn-

ng approaches ( Qian et al., 2018; Wee et al., 2014 ) involve the use

f a classifier with recursive feature elimination method based on the

lass-relevant weights of the classifier. Meanwhile, independent com-

onent analysis (ICA) has been widely utilized for analyzing intrinsic

rain networks based on predefined group templates, such as the default

ode network (DMN), control network, and somatomotor network, as

iomarkers of brain diseases or disorders ( Allen et al., 2011; Calhoun

nd Adali, 2012; Du et al., 2020 ). 

Recently, deep learning (DL) has drawn attention in the domain

f feature extraction as it enables the detection of informative brain

ctivity features, which can be used to differentiate a patient from a

ormal in an end-to-end manner. Unlike traditional methods, DL al-

ows for the extraction of features without prior knowledge and si-

ultaneously learning of meaningful discriminative features for accu-

ate diagnosis. For instance, Parisot et al. (2018) introduced a method-

logical framework to automatically learn a subject’s relations with

eature extraction based on functional connectivity (FC) has demon-

trated the identification of a patient based on the population manner.

awahara et al. (2017) devised a convolutional neural network (CNN)

ernel for feature extraction suitable for learning functional networks.

urthermore, Dvornek et al. (2019) used a discriminative and genera-

ive network to learn neurological functional relations for disease clas-

ification. These statistical, machine learning, and deep learning-based

eature selection and extraction approaches help in the identification

f disease-related biomarkers and prediction of diseases with reliable

lassification rates. 

One aspect that these methods have in common is that they are based

n the assumption that; predefined diagnostic groups, i.e., the patient

nd normal groups, can be segregated from each other and have high ho-

ogeneity within each group ( Du et al., 2018 ). Under this assumption,

ost existing studies have captured features that focus only on group

ifferences. Specifically, an independent sample 𝑡 -test assumes there is a

tatistical difference between the means of the two groups. In the mean-

ime, machine learning and deep learning infer a function that maps the

raining fMRI dataset to a specific diagnostic group. However, in prac-

ice, symptoms and their level of severity differ from one patient to the

ther, even if all the patients are diagnosed with the same MCI status.

ince early-stage mild cognitive impairment (eMCI) can develop into

arious types of dementia, individuals diagnosed with eMCI may show

ifferent disease-related regions from which dementia is highly likely to

evelop and with varying degrees of severity. Inconsistent brain activ-

ty patterns resulting from this discrepancy within a group might affect

he discriminative power of the classification and result in inaccurate

iomarker identification. 

In this regard, the importance of individual biomarkers is empha-

ized ( Arbabshirani et al., 2017; Rathore et al., 2017 ). Representative

rain functional properties across subjects have provided meaningful in-

ights into diseases in some cases. However, they may not be applicable

o others ( Mohr and Nagel, 2010; Mueller et al., 2013 ). Departing from

he general approach, where the same significant ROI sets for all subjects

re used for classification or analysis, it is necessary to consider individ-

al variability by considering subject-specific diagnostic ROIs. However,

t is challenging to cover both individual variability and common diag-

ostic group properties simultaneously because the rs-fMRI data con-

ains complex signals, the psychological or neurological label is coarse-

rained, accurate region-wise label is not available for the co-activities
2 
f multiple regions, and a gold standard of disease-discriminative re-

ions does not exist for each individual. 

Hence, we devise a novel reinforcement learning (RL)-based ap-

roach to handle region selection individually without any prior knowl-

dge. In the RL framework, the environment shows the agent a state ;

ubsequently, the agent performs an action to maximize the total reward

mount ( Sutton and Barto, 2018 ). This action is reflected in the environ-

ent as well in the next state. Through an iterative interacting proce-

ure, the agent finally achieves the maximal total reward through trial-

nd-error , even if the agent has no true label or prior knowledge. Deep-

eural-network-based RL (deep RL), a method that applies DL to RL, is

dvantageous as it enables a fully autonomous agent without memory

nd computational problems, thereby addressing the limitations of tradi-

ional RL ( Arulkumaran et al., 2017 ). Furthermore, a gradient, which is

 learning signal from the neural network, helps in the effective approx-

mation of the optimal policy. Owing to the algorithmic advancement of

ecent deep RLs, we propose to circumvent the unobservable true label

ssue by maximizing the reward related to the learning signals in the

odel. 

In this study, we propose a novel framework combining neural net-

orks with RL strategies. Our method selects ROIs containing tempo-

ally meaningful information about each ROI signal and explores the

unctional relations of the selected ROI sets for each subject consi dering

ndividual variability. Compared with other feature selection methods

idely used in fMRI analysis, the RL algorithm allows the selection of

OIs automatically and individually. Because the different ROI sets may

ave an impact on the resulting functional relations ( Sohn et al., 2015 ),

he RL-based selected ROI sets can help avoid the learning of functional

elations between less important ROIs, as well as capture complex and

ubtle functional changes caused by eMCI more robustly. 

To represent functional relations, we used a graph convolution net-

ork (GCN) ( Kipf and Welling, 2016 ). Graph-theory-based methods

ave been previously adopted for fMRI ( Medaglia, 2017; Wang et al.,

010 ), as it contributes to its ability to model topological properties in-

rinsic to brain networks. The brain, a complex network system, can be

epresented by a set of nodes and edges, where the regions of voxels

an be defined as vertices, i.e., vertex features, and their functional or

tructural connections can be regarded as edges. One of the graph-based

ethods in neuroimaging studies, GCN which is a generalization of a

NN for a non-Euclidean domain, has received attention as a potential

ool for discriminating between groups or individuals in network-level

rain systems ( Ktena et al., 2018; Parisot et al., 2018; Yan et al., 2019 ).

imilar to conventional methods that use FC to capture functional infor-

ation between regions, a GCN can capture local and global nonlinear

atterns of a topological organization. 

To summarize, our model constructs ROI sets having class-

iscriminative and informative characteristics for each subject. Then, it

epresents their functional relational properties for clinical utilization.

ur contributions can be summarized as follows: we propose a novel

ramework for automatic region selection and modeling the regions’

unctional relation. We analyze the ROIs selected from our proposed

ethod and compare them with the MCI relevant regions reported in

euroscience studies. Based on the results, we report eMCI-related infor-

ation and individual differences. We, finally, validate the effectiveness

f our proposed method using the ADNI public dataset by comparing its

erformance to those of other methods. 

. Materials and preprocessing 

.1. ADNI cohort 

We used data from 101 subjects from the ADNI cohort (in ADNI2 and

DNI GO). Specifically, we collected a dataset comprising 53 individ-

als with eMCI (33F/20M) and 48 cognitively normal (CN; 27F/21M)

ndividuals. Their mean ages were 75 . 2 ± 6 . 2 and 71 . 7 ± 7 . 1 , respectively.

rom the longitudinal data, we obtained total 316 samples (136 CN and
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Fig. 1. Overview of our proposed framework for eMCI classification. The temporal embedding network 𝜙 transforms the input BOLD signal. From the embedded 

features of each ROI involving meaningful information in BOLD, the agent 𝜋 selects ROIs. Subsequently, the graph comprising the selected ROIs is fed into a GCN 

to represent regional relations. Finally, the learned graph features are used in the classifier 𝜌. ( 𝑛 𝑅 : number of ROIs; CNN: convolution neural network; GCN: graph 

convolution network). 

1  

n  

T  

q  

t

2

 

i

a  

f  

w  

v  

f  

d  

f  

F  

i  

T  

e  

B  

(

3

 

w  

f  

2  

s  

e  

e  

i  

s  

fi  

s  

c  

a

 

1  

{  

R  

C  

t  

t  

𝜋  

i  

t  

w  

H  

t  

l  

T  

(  

n  

a

3

 

w  

w  

2  

n  

(  

o  

v  

a  

(  

t  

d  

r  

d  

f

 

t  

a  

c  

c  

i  

i  

𝜙  

c  

𝜙

 

i  

n  

n  
80 eMCI). The images were scanned using 3.0T Philips Achieva scan-

ers in multi-center with following protocol and parameters: Repetition

ime (TR) = 3000ms, Echo Time (TE) = 30ms, flip angle = 80 ◦, ac-

uisition image size = 64 × 64 , 48 slices, 140 time points, and a voxel

hickness = 3.3mm. 

.2. Preprocessing 

In this work, the dataset was preprocessed using the Data Process-

ng Assistant for Resting-State fMRI ( Yan et al., 2016 ) based on SPM12 4 

nd REST 

5 . During preprocessing, we discarded the first 10 time-points

or each subject for magnetization equilibrium. The remaining volumes

ere then spatially normalized to the MNI space and resliced to a

oxel size of 2 × 2 × 2 mm 

3 . Then, the images were smoothed by 4mm

ull width at half maximum (FWHM) using a Gaussian kernel to re-

uce spatial noise. We band-pass-filtered the temporal BOLD signals

rom 0.01 to 0.1 Hz to obtain low-frequency fluctuations in rs-fMRI.

or regional mean time signals, we divided the brains spatial domain

nto 114 ROIs based on the 17 networks from the functional atlas of

homas Yeo et al. (2011) , and then took the average of voxels within in

ach ROI for each subject. The whole preprocessing above resulted in

OLD signals 𝑋 ∈ ℝ 

𝑛 𝑅 ×𝑛 𝑇 , where 𝑛 𝑅 and 𝑛 𝑇 denote the number of ROIs

 𝑛 𝑅 = 114 ) and volumes ( 𝑛 𝑇 = 130 ), respectively. 

. Proposed methods 

In this section, we describe our novel neural-network-based frame-

ork for eMCI classification, as schematized in Fig. 1 . We introduce our

ramework by defining it as a set-input neural network ( Zaheer et al.,

017 ), based on our hypothesis that each subject has a different ROI

et composed of ROI elements that are functionally meaningful for dis-

ase identification. Our proposed framework comprises a permutation-

quivariant network and a permutation-invariant network, thereby sat-

sfying the permutation-invariant condition that should be met for a

et-input neural network. Although general DL models cannot handle

xed-length variables across samples for different sizes of sets across

ubjects, a set-input neural network can do so effectively. In addition, it

an successfully capture patterns of input instances such as ROI signals,

nd represent subtle abnormalities in the input instances. 

Given the preprocessed rs-fMRI signals of the 𝑛 -th sample, 𝑛 =
 , … , 𝑛 𝑠 , where 𝑛 𝑠 is the number of training samples, and 𝑋 

𝑛 =
 𝐱 𝑛 1 , … , 𝐱 𝑛 

𝑖 
, … , 𝐱 𝑛 

𝑛 𝑅 
} ∈ ℝ 

𝑛 𝑅 ×𝑛 𝑇 with its elements 𝐱 𝑛 
𝑖 
∈ ℝ 

1×𝑛 𝑇 as the 𝑖 th

OI signal, the signals first pass through a region-wise or ROI-wise,

NN-based temporal embedding network 𝜙 ( Section 3.1 ) for the ex-

raction of meaningful information which includes temporal fluctua-
4 https://www.fil.ion.ucl.ac.uk/spm/ 
5 https://www.nitrc.org/projects/rest/ 

e  

n  

𝜙  

t

3 
ions and functional dynamics. Subsequently, an ROI selection network,

, ( Section 3.2 ) selects significant ROIs out of all the input ROIs. Us-

ng a graph-based regional relation network 𝜓 ( Section 3.3 ), we model

he functional relations among the selected ROIs at the individual level

hile simultaneously enhancing the diagnosis power at the group level.

ereafter, we omit sample index 𝑛 for simplicity. It should be noted

hat all these modules in our framework are trained using two types of

earning schemes, supervised learning and RL, in an end-to-end manner.

he three modules of our framework, the temporal embedding network

 Section 3.1 ), ROI selection network ( Section 3.2 ), and regional relation

etwork ( Section 3.3 ), as well as their learning schemes ( Section 3.4 )

re described in detail as follows. 

.1. Temporal embedding network 

We first embed rs-fMRI data in an ROI-wise manner using a CNN,

hich is a special form of deep neural network and one of the most

idely used networks in the field of neuroimaging ( Hosseini-Asl et al.,

016; Shen et al., 2017 ). It is mainly composed of a convolution ker-

el and an activation function, and optionally, a pooling operation

 Shen et al., 2017 ). The convolution kernel learns the local features

f the input by sharing the filter weight and moving the filter both

ertically and horizontally. Typically, convolutional layers are stacked

s an effective class-relevant feature extractor during image analysis

 Gu et al., 2018 ). These features are followed by an activation func-

ion operation for nonlinearity, beneficial for learning complex fMRI

ata in neural networks. We omit the pooling operation that summa-

izes features to preserve the fine-grained information inherent in fMRI

ata. Finally, the activated features are fed into the next module in the

ramework. 

Specifically, we use a one-dimensional kernel convolution opera-

ion (1D convolution) on the temporal axis; it is therefore regarded as

 temporal CNN. By performing convolution of time-series data, we

an extract the temporal features of the BOLD signals. Furthermore,

onsecutive convolution operations involve the application and slid-

ng of a temporal filter over the signal data, such that the dynam-

cs properties of the original BOLD signals are retained in the output,

( 𝐱 𝑖 ) , ∀𝑖 = 1 , ..., 𝑛 𝑅 . To learn the inherent temporal patterns of ROIs in

ommon, a 1D convolution filter is shared across the ROI signals, so,

( 𝑋) = { 𝜙( 𝐱 1 ) , ..., 𝜙( 𝐱 𝑖 ) , ..., 𝜙( 𝐱 𝑛 𝑅 )} . 
In addition, the use of 1D convolution ensures that our network sat-

sfies the permutation-equivariant condition of a deep set-input neural

etwork. Because the convolution operates in an ROI-independent man-

er, our temporal embedding network can be used as a permutation-

quivariant network. More precisely, for a given rs-fMRI image 𝑋, the

etwork extracts the temporal features of the BOLD signal of each ROI,

( 𝐱 𝑖 ) ∈ ℝ 

𝑛 ′
𝑇 
×𝑛 𝐹 where 𝑛 ′

𝑇 
and 𝑛 𝐹 denote the dimensions of convolved

imepoints and feature maps, respectively. In the training phase, 𝑛 
𝐹 

https://www.fil.ion.ucl.ac.uk/spm/
https://www.nitrc.org/projects/rest/
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Fig. 2. Formulation of an interaction between the agent and the environment. 

The agent selects ROIs that have useful and class-discriminative information 

for disease identification. The environment shows the state, i.e., the embedded 

features, to the agent. Based on the given current state, the agent makes an 

action of selecting ROIs. For this result, the agent receives the corresponding 

reward from the environment. The current action affects the environment and 

the next state. The agent is trained such that the rewards from the environment 

are maximized by repeating these steps. 
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t  
s controlled as a hyper-parameter and can be regarded as a multi-

erspective feature of the temporal pattern. Hereafter, the final output,

.e., all the ROIs of temporally embedded features, is considered as a set.

.2. ROI selection network 

Owing to the individual variability in the functional characteristics

f human brains, which can be affected by brain diseases or disorders,

e hypothesize that different ROIs for each subject may be informative

r useful for identifying disease-identifiable functional patterns. Inter-

ubject variability shows that group properties are not precisely repre-

entative of individuals. Based on this assumption, we introduce an ROI

election network 𝜋 to filter the ROIs to facilitate disease-identifiable

unctional feature representation in the ensuing module. The network 𝜋

nsures that all ROIs from the embedded BOLD signal are divided into

wo subsets. One is the set with class-discriminative information and the

ther is the set without this information. However, it is problematic for

his network to use well-known supervised learning strategies that exploit

aired data and labels directly. No clear criterion exists regarding which

OIs are diagnostically discriminative for a subject. In other words, no

round truth for disease-discriminative ROIs are available to train the

etwork. 

To model a selection network, hereafter referred to an agent, that

an automatically find the disease-discriminative ROI subset without

ny ground truth or prior knowledge, we formulate the RL framework,

hich we then use to construct the ROI selection network. We regard our

OI selection problem as a Markov decision process (MDP ( Sutton and

arto, 2018 )). We formalize the MDP as a tuple  ∶= ⟨𝑆, 𝐴, 𝑃 , 𝑟, 𝛾⟩,
here 𝑆, 𝐴, 𝑃 , 𝑟, and 𝛾 denote a set of states, a set of actions, a state

ransition matrix, a reward signal, and a discounted factor , respectively

 Sutton and Barto, 2018 ). For a clearer depiction of our formulation, the

ntire interaction between the environment and the agent is illustrated

n Fig. 2 . 

Generally, RL frameworks are categorized into model-based and

odel-free algorithms ( Sutton and Barto, 2018 ). In model-free RLs, it

s not necessary to model the environment. The agent can instead learn

n optimal policy directly. Because there are no particular factors inter-

upting ROI selection using rs-fMRI, we focus on model-free RL. Further-

ore, among the model-free frameworks, we use a policy-based method

n which the policy can be parameterized ( Sutton and Barto, 2018 ). A

ignificant advantage of parameterizing policy according to the proba-

ilities in action preferences is that it can achieve an optimal stochastic

pproach with imperfect information ( Sutton and Barto, 2018 ). Thus,

e use a policy-based RL algorithm. 

Before describing our network, we design a training process for the

OI selection network 𝜋, or the agent. In our case, the environment pro-

ides state 𝑠, i.e., the feature representation from the set of ROIs via

he embedding network 𝜙, and the reward 𝑟 according to the agent’s

ction 𝑎 . To train our ROI selection network, we use the REINFORCE al-

orithm ( Sutton et al., 2000 ). Our framework first generates an episode

 𝑠 0 , 𝑎 0 , 𝑟 1 , ..., 𝑠 𝑇−1 , 𝑎 𝑇−1 , 𝑟 𝑇 ) , where 𝑇 is the episode length. The initial

tate 𝑠 0 is denoted by 𝑠 0 = 𝜙( 𝑋; 𝜃(0) 
𝜙
) = { 𝜙( 𝐱 𝑖 ; 𝜃

(0) 
𝜙
) |𝑖 = 1 , ..., 𝑛 𝑅 } , where
4 
(0) 
𝜙

denotes the parameter of the temporal embedding network 𝜙 at the

th iteration (i.e., the initial setting). Then, our ROI selection network 𝜋

ecides an action 𝜋( 𝑠 0 ; 𝜃
(0) 
𝜋 ) = 𝑎 0 ∈ {0 , 1} 𝑛 𝑅 , where ‘1’ and ‘0’ denote the

OI selection and non-selection, respectively. Now, the 𝑏 th state in the

 th iteration can be generalized as follows: 

 𝑏 = 

{ 

𝜙

(
𝐱 𝑖 ; 𝜃

( 𝑏 ) 
𝜙

)|||𝑎 𝑏 −1 ,𝑖 = 1 , 𝑖 = 1 , ..., 𝑛 𝑅 
} 

(1)

here the ( 𝑏 − 1) th action for the 𝑖 th element is estimated as follows: 

 𝑏 −1 ,𝑖 = 𝜋
(
𝑠 𝑏 −1 ; 𝜃𝜋

)
∈ {0 , 1} . (2)

inally, the classification loss at the 𝑏 th iteration, detailed in Eq. (11) is

sed as the 𝑏 th reward signal for the given action. 

Because we want to train our policy network to maximize the total

eward over the entire process in an episode, we consider a so-called

elayed reward ( Sutton and Barto, 2018 ) at each time point a decision

s made. Therefore, we use a discount factor, 𝛾 ∈ [0 , 1] , as a hyperpa-

ameter, to control the effect of the delayed reward. When 𝛾 is close to

ne, the agent seeks future-oriented rewards; when it is close to zero, it

eans the agent weighs the reward of the present situation higher. The

uture values of the rewards decay exponentially according to 𝛾. The

elayed reward affects ROI selection considering not only the immedi-

te reward of the ROI subset selected from the current state, but also

he future reward of the ROI subset from the next state. With the given

eward 𝑟 𝑡 and discount factor 𝛾, we define the total return 𝐺 𝑡 as follows:

 𝑡 = 

𝑇 ∑
𝑙= 𝑡 +1 

𝛾𝑙− 𝑡 −1 𝑟 𝑙 . (3)

inally, we update the tunable parameter of the agent to optimize the

equential actions by performing a gradient ascent to maximize the ex-

ected total return 𝔼 [ 𝐺 𝑡 ] . To do so, we estimate the 𝑡 th gradient as fol-

ows: 

𝜃𝜋 = 𝛼𝐺 𝑡 ∇ ln 𝜋( 𝑠 𝑡 ; 𝜃𝜋) (4)

here 𝛼 is the learning rate. 

In this study, we use an ROI-wise CNN for the ROI selection network

. The temporal embedding network first learns meaningful features

nd emphasizes on them in an ROI-independent manner. Then, our ROI

election network 𝜋 selects a subset of ROIs containing meaningful in-

ormative features using an interactive trial-and-error learning strategy.

.3. Regional relation network 

To build a regional relation network 𝜓 for the selected ROIs, we

se the GCN ( Kipf and Welling, 2016 ) considering the following advan-

ages: graph representation learning and permutation invariance. One

f our contributions is that our framework is devised to manage indi-

idual variability in rs-fMRI. Similar to the ROI selection network, the

etwork for regional relation representation learning has no limitation

n the input size. Unlike most deep models, which require fixed input

ariables and cannot easily cope with varying input sizes, GCN is prac-

ical in the sense that it can overcome this constraint. Owing to the
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nordered attributes of graph nodes, each subject and its corresponding

odes are regarded as set and set elements, respectively. In addition, it is

ot necessary to have graphs of the same size. Therefore, GCN satisfies

he permutation-invariant condition. 

.3.1. Graph construction 

To capture the relationship between selected regions, we construct

 graph. The input graph is defined as a weighted graph  = {  ,  , } ,
here  is a set of nodes and  is a set of edges.  denotes the weight

f the adjacency matrix of the weighted connection between the edges.

 𝑖 ∈ 𝑍 is an attribute of the 𝑖 th node, where 𝑍 is the general form of

he matrix of the node attributes. In our study, the node attributes 𝑍

i.e., features) are defined as selected ROIs of each subject from the ROI

election network as follows: 

 = concat 
( { 

𝜙

(
𝐱 𝑖 ; 𝜃

( 𝑏 ) 
𝜙

)||||𝑎 𝑏 −1 ,𝑖 = 1 , 𝑖 = 1 , … , 𝑛 𝑅 

} ) 

∈ ℝ 

𝑛 ′
𝑅 
×𝑛 𝐹 (5) 

here concat is the concatenation operator. From Eq. (5) , 𝑍 becomes a

atrix comprising of only the selected ROIs, enhancing the classification

ccuracy. To perform graph convolution, the edges should present re-

ational information between paired nodes. We construct an undirected

eighted graph to adjust the importance between ROIs such that the

dge 𝑒 𝑖𝑗 = 𝑒 𝑗𝑖 ∈  or the weighted adjacency matrix  𝑖𝑗 represents a

imilarity between a feature vector 𝐳 𝑖 of the 𝑖 th node and a feature vec-

or 𝐳 𝑗 of the 𝑗th node, defined as follows: 

 𝑖𝑗 = exp 
( 

− 

sim ( 𝐳 𝑖 , 𝐳 𝑗 ) 
2 𝜎2 

) 

(6)

here sim ( ⋅, ⋅) is the similarity operation, and 𝜎 is the predefined kernel

idth. Eq. (6) implies that if the inputs have similar embedding values;

his indicates a high similarity between the corresponding ROIs. Note

hat when different ROIs are selected for each subject, graph  from the

election network also differs for each subject. 

.3.2. Graph convolution networks 

The main building block in our regional relation network 𝜓 lever-

ges spectral graph convolution based on a graph Fourier transform

GFT) ( Chung and Graham, 1997 ). From the weighted graph with se-

ected ROIs, defined in Section 3.3.1 , spectral graph convolution is per-

ormed by first computing the eigendecomposition of the graph Lapla-

ian 𝐿 = 𝐷 −  , followed by a GFT, where 𝐷 = 

∑
𝑗  𝑖𝑗 ∈ ℝ 

𝑛 ′
𝑅 
×𝑛 ′

𝑅 is the

iagonal degree matrix in the graph, and 𝑛 
′
𝑅 

denotes the number of se-

ected ROIs. Specifically, the normalized form of the graph Laplacian

 = 𝐼 − 𝐷 

−1∕2 𝐷 

−1∕2 , where 𝐼 ∈ ℝ 

𝑛 ′
𝑅 
×𝑛 ′

𝑅 is an identity matrix, is de-

omposed as 𝐿 = 𝑈 Λ𝑈 

⊤ by its eigenvectors 𝑈 ∈ ℝ 

𝑛 ′
𝑅 
×𝑛 ′

𝑅 and the corre-

ponding diagonal matrix of the eigenvalues Λ ∈ ℝ 

𝑛 ′
𝑅 
×𝑛 ′

𝑅 . 

Given a filter 𝑔 𝜃 that is a diagonal matrix parameterized with Fourier

oefficients 𝜃 ∈ ( ℝ ) 𝑛 
′
𝑅 , the spectral convolutions of the signal 𝐳 ∈ ℝ 

𝑛 ′
𝑅 

assuming a single scalar feature per node) are defined as 𝑔 𝜃 ∗ 𝐳 =
 𝜃( 𝐿 ) 𝐳 = 𝑔 𝜃( 𝑈 Λ𝑈 

⊤) 𝐳 = 𝑈 𝑔 𝜃(Λ) 𝑈 

⊤𝐳 with properties of GFTs. Here, with

egard to filter approximation, we use 𝐾th order Chebyshev polynomial

lters ( Defferrard et al., 2016 ), 𝑔 𝜃( 𝐿 ) 𝐳 = 

∑𝐾 

𝑘 =0 𝜃𝑘 𝑇 𝑘 ( ̃𝐿 ) 𝐳, which provides

he benefits of 𝐾-localization and cost-effective computation of convo-

ution. �̃� = 

2 
𝜆𝑚𝑎𝑥 

𝐿 − 𝐼 is the scaled Laplacian matrix and 𝜆𝑚𝑎𝑥 is the max-

mum eigenvalue Λ. 𝜃𝑘 is a coefficient of the Chebyshev polynomial. 

In Kipf and Welling (2016) , the author proposed a simplified GNN

f Defferrard et al. (2016) as 𝐾 = 1 of the Chebyshev polynomial and

𝑚𝑎𝑥 = 2 , as follows: 

 𝜃 ⋆ 𝐳 ≈ 𝜃

(
𝐼 + 𝐷 

− 1 2 𝐷 

− 1 2 
)
𝐳 (7)

here 𝜃 is a single parameter that prevents overfitting by constrain-

ng the number of parameters in the polynomial. Furthermore, they

ntroduced renormalization trick 𝐼 + 𝐷 

− 1 2 𝐷 

− 1 2 to �̃� 

− 1 2 ̃ �̃� 

− 1 2 , where
5 
̃
 =  + 𝐼 and �̃� = 

∑
𝑗 ̃ 𝑖𝑗 are the adjacency matrix and degree ma-

rix from the renormalization trick, respectively. Finally, our regional

elation network 𝜓 based on graph convolution for the general form of

ode features 𝑍 is defined as follows: 

( 𝑍) = �̃� 

− 1 2 ̃ �̃� 

− 1 2 𝑍𝜃 (8)

here 𝜃 ∈ ℝ 

𝑛 𝐹 ×𝑛 𝐻 is a trainable parameter, i.e., the weight for linear

apping of the feature (input or hidden features), and 𝑛 𝐻 

denotes the

ize of the hidden features of the GCN. 

The key idea behind the regional relation network 𝜓 is that the vertex

eatures are learned by reflecting and accommodating features of the

eighboring vertices. The node features in our framework are defined

or the selected ROIs from the embedding and ROI selection networks,

nd the weighted edges represent the similarities between these pairs.

he functional relations among the selected ROIs in a high-dimensional

pace are represented by training our GCN. 

.3.3. Readout layer and classifier 

For graph classification, it is necessary to represent node features

n a fixed-length form while maintaining meaningful information about

he graph. Xu et al. (2018) defined a graph as a multiset that has repeat-

ng elements and they investigated various pooling methods for graphs.

mong these methods, summation pooling was able to capture entire

ode features, and max pooling was found capable of capturing repre-

entative elements of the entire graph. Inspired by their study, we use

he readout function ( Cangea et al., 2018 ) defined from the hidden rep-

esentations of nodes to summarize the entire graph as a fixed represen-

ation. Concisely, we define the readout function for a hidden feature 𝐻

rom a regional relation network as follows: 

 = ReadOut ( 𝐻) = concat 
⎛ ⎜ ⎜ ⎝ 
𝑛 ′
𝑅 ∑

𝑖 =1 
𝐡 𝑖 , 

𝑛 ′
𝑅 max 

𝑗=1 
𝐡 𝑗 
⎞ ⎟ ⎟ ⎠ ∈ ℝ 

2 𝑛 ′
𝐻 (9)

here 𝐡 𝑖 ∈ 𝐻 is the hidden feature vector from the regional relation

etwork of the 𝑖 th node, and 𝑛 ′
𝐻 

is the output dimension of the feature.

e use node-wise summation pooling to capture all the node features of

he ROIs in the graph. Additionally, we use max-pooling in a node-wise

anner to improve the discriminative power of the diagnosis. Using the

eadout function, the final output decision label for each subject can

e estimated using �̂� = 𝜌( 𝐟 ) where 𝜌 denotes the feed-forward neural

etwork for classification. 

.4. Optimization 

To optimize the temporal embedding network 𝜙, ROI selection net-

ork 𝜋, regional relation network 𝜓, and classifier 𝜌 jointly in an end-

o-end manner, we leverage two types of learning schemes, namely, su-

ervised learning and RL. For supervised learning, a widely used binary-

ross-entropy-loss method is used for the three networks: temporal em-

edding 𝜙, regional relation representation 𝜓, and classification 𝜌. To

e specific, the tunable parameters of 𝜙, 𝜓, and 𝜌, denoted as 𝜃𝜙, 𝜃𝜓 , and

𝜌, are optimized as follows: 

∗ 
𝜙
, 𝜃∗ 

𝜓 
, 𝜃∗ 

𝜌
= arg min 𝜃𝜙,𝜃𝜓 ,𝜃𝜌BCE 

(
�̂� , 𝐲; 𝜃𝜙, 𝜃𝜋, 𝜃𝜓 , 𝜃𝜌

)
(10)

here �̂� and 𝐲 denote the predicted and the ground-truth labels, respec-

ively. Meanwhile, for the ROI selection network 𝜋, we use the REIN-

ORCE algorithm ( Sutton et al., 2000 ). Specifically, the trainable pa-

ameters 𝜃𝜋 of selection network 𝜋 are guided by reward 𝑟 𝑏 at the 𝑏 th

tep, defined as follows: 

 𝑏 = − BCE 
(
�̂� , 𝐲; 𝜃( 𝑏 ) 

𝜙
, 𝜃( 𝑏 ) 

𝜋
, 𝜃( 𝑏 ) 

𝜓 
, 𝜃( 𝑏 ) 

𝜌

)
, (11)

nd optimized to maximize the accumulated total rewards over 𝑇 steps

n an episode: 

∗ 
𝜋
= arg max 𝜃𝜋

𝑇 ∑
𝑏 =1 

𝛾𝑏 𝑟 𝑏 . (12)
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6 https://www.tensorflow.org/ 
n Eq. (12) , because the reward for the agent is defined with the negative

oss based on both the regional relation network and the classifier, we

elieve that the agent infers the informativeness of the ROIs, based on

he temporally embedded features, in the ensuing regional relation net-

ork and classifier indirectly. In other words, the agent observes tempo-

ally embedded features of each ROI and performs selection individually

ut it is also capable of inferring each region’s importance for regional

elation representation for classification. 

The pseudo-algorithm to train our proposed model is presented in

lgorithm 1 . 

Algorithm 1: Pseudo-algorithm to train the parameters of our pro- 

posed model 

Input : Training dataset { 𝑋 

( 𝑛 ) , 𝐲 ( 𝑛 ) |𝑛 = 1 , ..., 𝑛 𝑠 } ; network 

architectures 𝜃𝜙, 𝜃𝜋 , 𝜃𝜓 , and 𝜃𝜌; # of pre-training 𝑛 𝑝 ; # of 

mini-batches 𝑛 𝐵 , a mini-batch size 𝑀 and a discounted 

factor 𝛾; a stochastic gradient descent optimizer SGD and 

its hyperparmeters set 𝜼

Output : Optimized network parameters, 𝜃∗ 
𝜙
, 𝜃∗ 

𝜋
, 𝜃∗ 

𝜓 
and 𝜃∗ 

𝜌

// Pre-training of temporal embedding, regional 
relation, and classification networks 

1 for 𝑖 = 1 , … , 𝑛 𝑝 do 

2 for 𝑘 = 1 , ..., 𝑛 𝐵 do 

3 Draw a mini-batch set { 𝑋 

( 𝑚 ) , 𝐲 ( 𝑚 ) |𝑚 = 1 , ..., 𝑀} 
4 𝐟 ( 𝑚 ) ← ReadOut ( 𝜓( 𝜙( 𝑋 

( 𝑚 ) ; 𝜃𝜙); 𝜃𝜓 )) 
5 �̂� ( 𝑚 ) ← 𝜌( 𝐟 ( 𝑚 ) ; 𝜃𝜌) 
6  

( 𝑚 ) ← BCE ( ̂𝐲 ( 𝑚 ) , 𝐲 ( 𝑚 ) ) 
7 𝜃𝜙, 𝜃𝜓 , 𝜃𝜌 ← SGD ( 1 

𝑀 

∑𝑀 

𝑚 =1  

( 𝑚 ) ; 𝜃𝜙, 𝜃𝜓 , 𝜃𝜌, 𝜼) 

// Joint training of temporal embedding, ROI selection, 
regional relation, and classification networks 

8 while not converged do 

9 for 𝑘 = 1 , ..., 𝑛 𝐵 do 

10 Draw a mini-batch set { 𝑋 

( 𝑚 ) , 𝐲 ( 𝑚 ) |𝑚 = 1 , ..., 𝑀} 
11 𝜙( 𝑋 

( 𝑚 ) ) ← { 𝜙( 𝐱 ( 𝑚 ) 
𝑖 

) |𝑖 = 1 , ..., 𝑛 𝑅 } 
12 Generate episodes ( 𝑠 ( 𝑚 ) 0 , 𝑎 

( 𝑚 ) 
0 , 𝑟 

( 𝑚 ) 
1 , ..., 𝑠 

( 𝑚 ) 
𝑇−1 , 𝑎 

( 𝑚 ) 
𝑇−1 , 𝑟 

( 𝑚 ) 
𝑇 

) by 

recursively applying 𝜋 and Eq. (11) 

13 for 𝑡 = 0 , 1 , ..., 𝑇 − 1 do 

14 𝐺 

( 𝑚 ) 
𝑡 

← 

∑𝑇 

𝑙= 𝑡 +1 𝛾
𝑙− 𝑡 −1 𝑟 ( 𝑚 ) 

𝑙 

15  

( 𝑚 ) 
𝑡 

← 𝐺 

( 𝑚 ) 
𝑡 

ln 𝜋( 𝑠 ( 𝑚 ) 
𝑡 

; 𝜃𝜋) 
16 𝜃𝜋 ← SGD (− 

1 
𝑀 

∑𝑀 

𝑚 =1  

( 𝑚 ) 
𝑡 

; 𝜃𝜋, 𝜼) 

17 Get 𝑍 

( 𝑚 ) using 𝜙( 𝑋 

( 𝑚 ) ) and 𝑎 
( 𝑚 ) 
𝑇−1 by Eq. (5) 

18 𝐟 ( 𝑚 ) ← ReadOut ( 𝜓( 𝑍 

( 𝑚 ) ; 𝜃𝜓 )) 
19 �̂� ( 𝑚 ) ← 𝜌( 𝐟 ( 𝑚 ) ; 𝜃𝜌) 
20  

( 𝑚 ) ← BCE ( ̂𝐲 ( 𝑚 ) , 𝐲 ( 𝑚 ) ) 
21 𝜃𝜙, 𝜃𝜓 , 𝜃𝜌 ← SGD ( 1 

𝑀 

∑𝑀 

𝑚 =1  

( 𝑚 ) ; 𝜃𝜙, 𝜃𝜓 , 𝜃𝜌, 𝜼) 

. Experiments 

.1. Experimental setting 

In our experiment, we used three convolution layers to filter the rs-

MRI signal in the temporal filtering network 𝜙. The kernel size of the

rst convolution layer is 65 with five output filter maps. The kernel size

f the second layer was 30 with 10 output filter maps. In the last layer,

e used a CNN for global temporal embedding with a kernel size of

7 and filter map size of 20. The ROI selection network 𝜋 had a kernel

ize of 20 with one output filter map. Therefore, the dimensions of the

utput of the agent, i.e., the input of the regional relation network, was

 

𝑛 ′
𝑅 
×20 

, where 𝑛 ′
𝑅 

is the number of selected ROIs. In addition, we used

wo graph convolution layers for the regional relation network 𝜓, with
6 
 hidden feature size of 10 in the first layer and hidden dimension 5 in

he second layer. Then, the output dimension of the readout function

as ℝ 

10 , due to the concatenation of the summed and maximum values

n each dimension by Eq. (9) . Finally, a fully connected single layer was

sed as the classifier 𝜌. For pretraining, we set 𝑛 𝑝 as 10. The activation

unction for nonlinearity in all the convolution layers was an exponen-

ial linear unit (eLU) function, and the softmax function was used in the

nal fully connected layer. In Eq. (6) of the graph construction, we used

he correlation distance between the nodes i.e., ROIs, as follows: 

im ( 𝐳 𝑖 , 𝐳 𝑗 ) = 1 − 

( 𝐳 𝑖 − ̄𝐳 𝑖 ) ⊤( 𝐳 𝑗 − ̄𝐳 𝑗 ) ‖‖𝐳 𝑖 − ̄𝐳 𝑖 ‖‖2 ‖‖‖𝐳 𝑗 − ̄𝐳 𝑗 
‖‖‖2 (13)

here �̄� 𝑖 ∕ 𝑗 denotes a vector with the elements set by the mean of 𝐳 𝑖 ∕ 𝑗 .
otably, 𝜎 in Eq. (6) represents the mean value of the correlation dis-

ance between the nodes, based on Parisot et al. (2018) . To avoid over-

tting, we used layer normalization in all the convolution layers, Gaus-

ian dropout in the final fully connected layer, and an elastic net regular-

zer with 𝑙 1 = 0 . 005 and 𝑙 2 = 0 . 005 . Moreover, a label-smoothing method

 Szegedy et al., 2016 ) was used for the fully connected layer. The epoch

nd minibatch sizes were 50 and 5, respectively. A Nadam optimizer

 Dozat, 2016 ) was used for training, with a learning rate of 0.001. We

mplemented our model using TensorFlow. 6 

.2. Comparative Methods 

To validate our proposed method, we considered multiple compara-

ive conventional machine learning algorithms and recent deep neural

etworks. Specifically, we employed the following comparative models:

• FC-SVM: We trained a support vector machine (SVM) with FC com-

puted using Pearson correlation. As the input, the FC matrix was

flattened to a vector form using an upper triangle. The input dimen-

sions were (114 × 113)∕2 = 6 , 441 . For training, we used a linear SVM

and considered a slack variable 𝐶 in { 10 −5 , ..., 5 }. A grid search strat-

egy was used to select the optimal model. 
• CNN: A conventional CNN was used based on the same kernel and

feature map size as that of our temporal embedding network in

the BOLD input. After performing temporal embedding, the features

were fed into a spatial convolution layer that was added in the ROI

axis (114,1). Those features with a densely connected layer were

used for classification. 
• SA-CNN: This is self-attention ( Vaswani et al., 2017 ) mechanism

with a conventional CNN. We specifically utilized our temporal

embedding network to extract the temporal features. Then, we

estimated an attention mask using the self-attention framework

( Vaswani et al., 2017 ). The attention mask was Hadamard producted

to the represented features. Finally, we used a spatial convolution

layer for spatial feature extraction and a densely connected layer to

linearly map the features to the output dimension. 
• LSTM-DG ( Dvornek et al., 2019 ): We trained the original net-

work structure reported in Dvornek et al. (2019) based on a long

short-term memory network for discriminative and generative tasks.

Specifically, we used 50 and 20 hidden units in the first and second

layers, respectively. In the final layer, a dense connection was used

for the classification. The sliding window method was used as the

input, with a predefined window size of 30 and a stride of 1 in the

BOLD signal. 
• BrainNetCNN ( Kawahara et al., 2017 ): To train the FC, we used the

BrainNetCNN based on edge-to-edge, edge-to-node , and node-to-graph

layers. We implemented the network using two edge-to-edge layers

with 10 output feature maps, one edge-to-node layer with 20 output

feature maps, and one node-to-graph layer with 40 output feature

maps, to train over a limited number of training samples efficiently.

https://www.tensorflow.org/
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Table 1 

Demographics of ADNI subjects. MMSE: mini-mental 

state examination score; CDR: clinical dementia rating. 

CN eMCI 

Number of subjects 48 53 

Sex (Female/Male) 27∕21 33∕20 
Age (Mean ± SD) 71 . 2 ± 6 . 2 71 . 7 ± 7 . 1 
Education (Mean ± SD) 16 . 33 ± 2 . 33 15 . 82 ± 2 . 93 
Race 

Asian 0 2 

Black 2 0 

White 40 44 

More than one 1 2 

Unknown 5 5 

MMSE 28 . 84 ± 1 . 42 28 . 25 ± 1 . 67 
CDR 0 . 06 ± 0 . 18 0 . 48 ± 0 . 23 
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• GNN ( Parisot et al., 2018 ): We employed a GNN with features

selected via linear regression utilizing elastic net regularization

( Zou and Hastie, 2005 ) 7 . By defining a node as a subject; thus, a

population graph was constructed. We set the 𝐾 order of the Cheby-

shev polynomial as 3 in the GNN and used two GNN layers. In our

experiments, the phenotypes considered for the edge weight were

sex and age. 
• GAPool ( Knyazev et al., 2019 ): Our RL-based ROI selection network

can be understood as a type of pooling operation in the ROI dimen-

sion. In this sense, we also compared the pooling method in a graph

neural network ( Knyazev et al., 2019 ). The attention threshold value

was empirically set to 0.3. To build the model, we used a conven-

tional GCN with two layers ( Kipf and Welling, 2016 ). 
• Ours (Bandit): To test the effectiveness of RL, we trained the net-

work without a delayed reward. Thus, we generated an episode of

𝑇 = 1 and set our method as a multi-armed bandit problem. From

this setting, the agent worked as a simple gating mechanism for ROI

selection trained by supervised learning. 

To evaluate the performance of the competing methods, we con-

ucted a 10-fold cross-validation. Specifically, we split the data into 10

arts and used eight folds as training data, one fold as validation data,

nd another one fold as test data. It should be noted that because we con-

idered an eMCI identification with a cross-sectional sample, the dataset

artition was performed in a subject-based manner. In other words, we

ivided the 101 subjects into 10 folds; thus, samples of the same subject

ere assigned to the same fold. This guaranteed that none of the com-

eting methods, including our proposed method, take advantage of the

nformation of the samples from the same subjects during testing. Fur-

hermore, we repeated this process 10 times to measure the effectiveness

f the proposed method and reported the averaged performance with

tandard deviation. For a quantitative measurement, we calculated the

ollowing four metrics: accuracy (ACC = TP+TN/(TP+TN+FP+FN)),

ensitivity (SEN = TP/(TP+FN)), specificity (SPEC = TN/(TN+FP)),

nd area under the receiver operating curve (AUC), where TP, TN, FN,

nd FP denote true positive, true negative, false positive, and false neg-

tive, respectively. 

.3. Performance comparison 

Table 2 summarizes the diagnostic results. Specifically, our proposed

ethod achieved the best accuracy (74.42 ± 1.80) and AUC (0.7438 ±
.0161) with large margins compared to the other methods. Compared

ith BrainNetCNN ( Kawahara et al., 2017 ), which used the entire brain

elation represented by FC, our network used only the selected ROIs and

heir relation representation for clinical decision making. Furthermore,
7 We empirically selected the elastic net regularization ( Zou and Hastie, 2005 ) 

o select features, rather than the recursive feature elimination originally pro- 

osed in Parisot et al. (2018) . 

m  

d  

a  

p  

1  

7 
hile our method individually selected ROIs, GNN ( Parisot et al., 2018 )

sed the region-related features via sparse representation learning in a

roup-wise manner. Using the selected ROIs’ features in an individual

anner, our approach showed desirable performance, in addition to bal-

nced sensitivity and specificity. Compared with GAPool ( Knyazev et al.,

019 ), our model exploited a policy network trained in RL to reduce the

ize of the graph via an effective selection of nodes, i.e., the ROIs, as

 counterpart of the pooling strategy. From the trial-and-error strategy

sed in RL, our proposed method learned the optimal actions, which fur-

her enhanced its performance. Therefore, our method achieved a good

erformance in all the metrics. Additionally, compared with the Bandit

etting, our network achieved superior performance, with regard to the

CC and AUC. The delayed reward mechanism was also found to im-

rove the performance of our network. We also conducted a Wilcoxon

igned-rank test to validate the effectiveness of our proposed method

nd found that it demonstrated statistical significance as compared with

he other methods, with 𝑝 -values of 0.01 and 0.01 for the ACC and AUC,

espectively. 

. Discussion 

.1. Ablation Studies 

In this section, we investigate the effects of each regional relation

etwork (GCN), and the ROI selection network (agent). Because our

ramework is composed of two components, agent 𝜋 and GCN 𝜓, we

xperimented to determine which factor has the greatest impact on per-

ormance. These experiments can be categorized as follows: 

• 𝜙 (Ours w/o Agent and GCN) : To verify the effects of agent 𝜋 and

GCN 𝜓, we trained only the temporal embedding network. We used

the same kernel size, number of feature maps, and number of layers

as those used in our temporal embedding network. For classification,

we modified the structure of the last layer to the sum pooling and

dense connection layers. 
• 𝜙 + 𝜓 (Ours w/o Agent) : We investigated the efficacy of our ROI

selection network 𝜋 by eliminating it from the framework. The entire

framework was constructed using only the temporal embedding and

regional relation networks. Therefore, no ROIs were selected. All the

ROIs were fed into the network; thus, the last layer for classification

was changed by the Readout function of the graph of the entire ROI.
• 𝜙 + 𝜋 (Ours w/o GCN) : We removed our GCN 𝜓 to observe changes

in performance. To confirm the effect of the regional relation net-

work, we used sum pooling after the agent. In this setting, the re-

ward of the agent was defined using the sum relation loss instead of

the loss involved in the graph-based relation. 

The results of the average performance with standard deviations are

hown in Fig. 3 . Based on the results, we conclude the following: the

roposed method combining an agent and GCN demonstrated the best

erformance compared to the other settings. From ‘Ours w/o Agent,’ it

an be concluded that the use of an agent significantly improved the

erformance across all settings. Because the agent selected ROIs, which

ossibly involved informative characteristics for disease identification,

t had a positive effect on enhancing performance by removing distract-

ng features (i.e., class-irrelevant features). Observing the performance

egradation in ‘Ours w/o GCN,’ we could understand the importance of

sing regional relations for eMCI identification. 

.2. Analyses of agent and GCN 

In our framework, the agent selected ROIs that were determined as

eaningful information from the current state or the temporally embed-

ed features. To determine how the selected ROIs and non-selected ROIs

re distributed, we visualized all the features of the ROIs from the tem-

oral embedding network. With randomly selected models among the

0 folds, the features were projected onto a two-dimensional (2D) space
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Table 2 

A performance comparison of comparative methods on ADNI dataset. Boldface 

indicates the highest value in each metric. ⋆ denotes the statistical significance 

in 𝑝 < 0 . 01 . Our proposed method (Ours) is shown significantly improved results 

compared to other methods. 

Methods AUC ACC (%) SEN (%) SPEC (%) 

SVM 0 . 5429 ± 0 . 1399 ⋆ 56 . 93 ± 14 . 48 ⋆ 63 . 86 ± 14 . 64 44 . 68 ± 23 . 24 
CNN 0 . 5695 ± 0 . 0159 ⋆ 57 . 71 ± 2 . 05 ⋆ 68 . 49 ± 6 . 01 45 . 42 ± 5 . 89 
SA-CNN 0 . 5752 ± 0 . 0574 ⋆ 60 . 41 ± 7 . 05 ⋆ 𝟕𝟗 . 𝟗𝟕 ± 𝟏𝟔 . 𝟕𝟎 35 . 17 ± 20 . 88 
LSTM-DG 0 . 6425 ± 0 . 0185 ⋆ 63 . 50 ± 1 . 90 ⋆ 62 . 76 ± 3 . 10 65 . 73 ± 1 . 22 
BrainNetCNN 0 . 6723 ± 0 . 0201 ⋆ 67 . 62 ± 2 . 02 ⋆ 67 . 21 ± 5 . 00 67 . 08 ± 5 . 98 
GNN 0 . 5900 ± 0 . 0104 ⋆ 59 . 37 ± 0 . 80 ⋆ 52 . 03 ± 4 . 66 64 . 79 ± 3 . 48 
GAPool 0 . 5064 ± 0 . 0317 ⋆ 51 . 48 ± 3 . 95 ⋆ 58 . 31 ± 15 . 62 43 . 08 ± 13 . 95 
Ours (Bandit) 0 . 7295 ± 0 . 0143 73 . 07 ± 1 . 39 70 . 88 ± 3 . 01 𝟕𝟓 . 𝟎𝟑 ± 𝟐 . 𝟖𝟔 
Ours 𝟎 . 𝟕𝟒𝟑𝟖 ± 𝟎 . 𝟎𝟏𝟔𝟏 𝟕𝟒 . 𝟒𝟐 ± 𝟏 . 𝟖𝟎 75 . 72 ± 3 . 53 73 . 06 ± 3 . 40 

Fig. 3. Results of our ablation study for 

measuring effectiveness of each network, 

i.e., graph convolution layer and agent. 

Fig. 4. Visualization of feature from temporal embed- 

ding network using t-SNE. We randomly selected fold fea- 

tures for visualization. 
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sing t-distributed stochastic neighbor embedding (t-SNE) ( Maaten and

inton, 2008 ). As depicted in Fig. 4 , the groups of selected and non-

elected ROIs are distinctly divided in space. 

Furthermore, we investigated the correlation between selected and

on-selected ROIs by randomly selecting two subjects in each group.

sing the embedded features, we first reordered 114 ROIs, which were

ivided into selected and non-selected ROIs. We then calculated the

earson correlation between the ROIs. As depicted in Fig. 5 , the ROIs

ithin each group, in other words, the selected ROIs group, and non-

elected ROIs group show a high correlation values; whereas the inter-

elation is negatively correlated. From this observation, we confirmed

he agent captures selected or non-selected regional features obtained

y the temporal embedding network 𝜙, which are distinguishable from

ne another. 

However, the selected ROIs do not guarantee if they are discrimina-

ively correlated with the disease. Hence, we projected the features from

he Readout function into a 2D space, using t-SNE once again. Using these

eatures, we were able to capture the represented relations between the

d  

8 
elected ROIs and the discriminative information of the disease. As pre-

ented in Fig. 6 , the features comprising only selected ROIs showed two

lusters that are separated in the space, each of which corresponded to

 group such as CN and eMCI. The selected ROIs were also found to

ossess valuable diagnostic information. 

.3. Reproducibility of ROIs selection and individual variability 

The main role of our agent is to select ROIs individually and

ig. B1 illustrates several examples wherein ROIs are selected individ-

ally for each subject. Due to the randomness that exists in our agent

etwork, especially in terms of episode generation, we were concerned

bout the reproducibility of the selected ROIs over different subjects.

e repeated our experiments beyond the pretraining of networks (lines

 − 7 in Algorithm 1 ). During these repeated experiments, we recorded

he agent’s actions, denoted as ‘ action vectors ’ by {0 , 1} 𝑛 𝑅 , where 𝑛 𝑅 is

he number of ROIs in a whole brain, for each of the samples in our

ataset. From two independent runs (Runs #1 and #2), we compared
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Fig. 5. Correlation matrix of embedded features. Red box and blue boxes represent selected and non-selected regions, respectively. We randomly selected four 

subjects and reordered the selected and non-selected ROIs. Using the feature, we calculated the Pearson correlation. Value of red color denotes a high correlation 

value. 

Fig. 6. Visualization of the distributions of features rep- 

resented through a Readout function before the classifier 

using t-SNE. Each color denotes a class. Randomly se- 

lected fold features were used for visualization. 

Fig. 7. Visualization of selected brain regions of randomly selected subjects. The green regions are overlapped regions between Run #1 and Run #2; red and yellow 

regions are from Run #1 and Run #2, respectively. Sub # 𝑛 : 𝑛 denotes RID in the ADNI cohort. To emphasize the regions, we removed the ROI names. 
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he regions that were commonly selected or not selected. Fig. 7 presents

xamples of three randomly chosen subjects in the dataset. 

The number of overlapped regions demonstrates the reliability of our

gent. For quantitative analysis, we filtered the correctly classified sub-

ects in the test. Then, we calculated the intersection over union (IoU)

y dividing the number of elements of intersection between Run #1 and

un #2 into the number of elements of union between Runs #1 and #2

 Minaee et al., 2020 ). We also measured the ratio of the overlapped re-

ions with the action vectors obtained from the two runs for each sample

r subject. Because the agent returns not only 1 (meaning selection) but

lso 0 (meaning non-selection), we calculated the IoU for the selected

IoU 1 ) and non-selected regions (IoU 0 ). From these metrics, we obtained

a  

9 
 mean IoU of 71 . 46 ± 5 . 71 , defined as (IoU 1 + IoU 0 ) ∕2 . The higher the

ean IoU, the better the power of reproducibility of our agent network.

s the mean IoU was large and the performance of our network was

uperior, we infer the selected ROIs, duplicated in the repeated runs,

arry meaningful information regarding disease identification, and that

hese regions varied among the subjects, as shown in Fig. 7 , reflecting

ndividual variability. 

.4. eMCI subtype analysis 

To demonstrate subject-subject variability, we conducted a subtype

nalysis of the eMCI group. Since the cognitive impairment has hetero-
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Fig. 8. Top: subtype of eMCI. Each color of line denotes each subgroup. Bottom: statistical test results for subtype analysis using selection vector from agent network. 

∗∗ denotes 𝑝 < 0.005. Each color of bar plot denotes the each subgroup. 
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eneous manifestations that correspond to different regions or networks

aving different deficits, we expected that our ROI selection network,

hich is capable of considering individual characteristics, will also be

ble to effectively identify differences between the different subtypes of

CI. From the perspective of reliability, the subtype analysis will also

emonstrate that our selected ROIs are not randomly inferred from the

s-fMRI signals. A hierarchical clustering using the Ward linkage method

s widely used to cluster different types of input data, especially in the

eld of neuroimaging ( Clark et al., 2013; Edmonds et al., 2019; Nettik-

immons et al., 2014 ). Taking the pattern of the selection vector from

he agent as an input, we clustered eMCI into four subtypes. Moreover,

e conducted a statistical test at the functional network level to examine

he validity of these subtypes. 
10 
For the convenience of interpretation, we represented the subgroups

btained from the clustering analysis at the network level. As such, we

alculated the selection ratio of the network by counting the selected

OIs in the network and dividing it by the number of ROIs belong-

ng to the network and the number of subjects in a subgroup. Accord-

ng to the analysis, four subgroups were identified: (1) somatomotor

nd attention network-biased, (2) low network-wide, (3) DMN-biased,

nd (4) high network-wide group. Somatomotor and attention network-

iased group mainly included the regions of the somatomotor and at-

ention networks. The DMN-biased group showed prominently chose

egions of the DMN. The low network-wide group showed the lowest

election ratio amongst all the networks, whereas the high network-

ide group showed the highest selection ratio amongst all the net-
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Fig. 9. Statistically different regions between CN and eMCI. The node color denotes each network. 

Fig. 10. Edges from the GCN of eMCI 

group (top), CN group (middle), and the 

absoluted difference between two groups 

(bottom). The thickness of the edges de- 

notes the strength of the value of edge. 
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8 For all regions name, refer to Table 1 
orks. All the subgroup selection ratios are presented in Fig. 8 . To val-

date if these subgroups differed significantly in terms of their char-

cteristics, we conducted the Wilcoxon rank-sum test ( 𝑝 < 0.005) us-

ng the selection ratio of each network. As shown in Fig. 8 , most

etworks show statistically significant results in all the subgroups.

ased on these results, we can conclude that our agent considered

oth personal and subtype properties and was unaffected by noise or

andomness. 

.5. Investigation of the selected ROIs 

For the neuroscientific analysis of the eMCI and CN groups at the re-

ional level, we conducted a group analysis based on the action vectors

rom our agent network. We took the sum of the action vectors for all

he subjects within each group, CN and eMCI; this resulted in one fre-

uency vector per group. Then, we investigated the ROIs that showed

ignificantly different frequency counts between the two groups, based

n a Chi-square test. In Fig. 9 , we visualized the significantly different

egions between the groups by mapping the elements into the various

egions of the brain using the BrainNet Viewer ( Xia et al., 2013 ). The col-
11 
rs in the figure indicate the functional networks. The regions selected 8 

sing by Chi-square ( 𝑝 < 0 . 05 ) are as follows: 

• Somatomotor network: insula (R) 
• Salience/Ventral attention network: insula (R) 
• Control network: lateral prefrontal cortex (L) 
• Default network: inferior parietal lobule (L), temporal (L), lateral

prefrontal cortex (L), parahippocampal cortex (L), medial prefrontal

cortex (R), parahippocampal cortex (R) 

To be specific, with respect to the somatomotor network and the

alience/ventral attention network, abnormalities in the insular, the hub

f the human brain network, cognition, and sensory processing, have

reviously been reported in MCI subjects ( Xie et al., 2012 ). The other

egions were mostly included in the DMN; this finding coincides with

hose of the previous studies. The DMN is one of the most investigated

etworks for MCI ( Eyler et al., 2019; Koch et al., 2012 ). The inferior

arietal lobule, lateral prefrontal cortex (also the selected from control

etwork), and medial prefrontal cortex show abnormal and impaired
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unctional connections in both AD and MCI ( Jin et al., 2012; Teipel et al.,

017; Wang et al., 2015 ). Since the temporal (temporal cortex or gyrus) 9 

s associated with the memory system, it is widely known its abnormal-

ty is related to early pathological symptoms of AD ( Dickerson and Sper-

ing, 2008 ). The parahippocampal cortex shows decreased brain activity

n MCI ( Xi et al., 2012 ) and is known to be related to episodic memory.

urther, impaired episodic memory caused by damage to the DMN is a

linically relevant symptom of MCI patients ( Dunn et al., 2014 ). 

We also analyzed the edge (similarity between ROIs) of statistically

elected regions that comprised the graph in the GCN network. Sim-

lar to the region analysis, the difference between the eMCI and CN

roups can be observed in the obtained similarity values. In Fig. 10 ,

he strength of edge is higher in the eMCI group than that in the CN

roup, especially in the DMN including such as the right parahippocam-

al cortex, left parahippocampal cortex, and temporal cortex. Most stud-

es ( Badhwar et al., 2017 ) concerning AD and MCI analysis have re-

orted the decreased functional connectivity in the DMN. However, it

hould be noted that we defined the edge as the similarity of the net-

orks embedded feature, not the functional connectivity that we used

or analysis. Therefore, it is not appropriate to compare our results to

hose in the literature. However, whether the edges from the embed-

ed feature in the DMN of eMCI contain meaningful information can be

nferred. 

. Conclusion 

The combining of machine-learning techniques with rs-fMRI has

een regarded as a useful tool and has been intensively investigated

or the identification of degenerative brain diseases such as AD. For fea-

ure selection and/or extraction, conventional methods perform feature

election from a group perspective. In this study, we built our method

y considering individual variability and accordingly defined problems

or informative region selection and relational representation learning

or eMCI identification. We propose a novel framework for identifying

 subject with eMCI, in which the ROIs are selected automatically and

ndividually using an RL mechanism, and their regional relations are

rained using a GCN. In particular, our agent network automatically se-

ects ROIs from the temporally embedded BOLD signals. Then, the GCN

epresents the regional relations based on a graph defined using only

he selected regions. By systematically integrating these networks, we

btain different neurophysiological patterns of eMCI. In the experiment,
9 Refer to Thomas Yeo et al. (2011) to check the detailed brain regions. 

12 
e used these patterns for eMCI identification in the public ADNI dataset

nd empirically demonstrated the validity of our proposed method by

omparing it to competing baselines reported in the literature. In addi-

ion, we demonstrated the effects of our agent and GCN in an ablation

tudy and analyzed the networks by visualizing the features of different

ayers in the proposed framework through the use of a t-SNE. Because

ur agent selected the ROIs individually, we performed our analysis by

omparing the ROIs to those reported in neuroscience studies related

o AD and MCI. The results indicated that our method can successfully

elect the relevant regions reported in neuroscience studies concerning

D. Owing to its advancements, it is of significant importance that stud-

es on AD are conducted using longitudinal data, and it is desirable to

xtend this work in that direction in the future. 
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A

t al., 2011 ). Left and right indices in the table represent left- and 

ROI Label 

Striate cortex (Striate) 

Extra-striate cortex (ExStr) 

Striate cortex (Striate) 

Extra-striate inferior (ExStrInf) 

Extra-striate superior (ExStrSup) 

Somatomotor A (SomMotA) 

Central (Cent) 

S2 (S2) 

Insula (Ins) 

Auditory (Aud) 

Temporal occipital (TempOcc) 

Parietal occipital (ParOcc) 

Superior parietal lobule (SPL) 

Temporal occipital (TempOcc) 

Post central (PostC) 

Frontal eye fields (FEF) 

Precentral ventral (PrCv) 

Parietal operculum (ParOper) 

Precentral (PrC) 

Precentral ventral (PrCv) 

Insula (Ins) 

Parietal medial (ParMed) 

Frontal medial (FrMed) 

Inferior parietal lobule (IPL) 

Dorsal prefrontal cortex (PFCd) 

Lateral prefrontal cortex (PFCl) 

Lateral ventral prefrontal cortex (PFClv) 

Ventral prefrontal cortex (PFCv) 

Medial posterior prefrontal cortex (PFCmp) 

Cingulate anterior (Cinga) 

Temporal pole (TempPole) 

Orbital frontal cortex (OFC) 

Temporal (Temp) 

Intraparietal sulcus (IPS) 

Dorsal prefrontal cortex (PFCd) 

Lateral prefrontal cortex (PFCl) 

Cingulate anterior (Cinga) 

Temporal (Temp) 

Inferior parietal lobule (IPL) 

Lateral dorsal prefrontal cortex (PFCld) 

Lateral ventral prefrontal cortex (PFClv) 

Medial posterior prefrontal cortex (PFCmp) 

Precuneus (pCun) 

Cingulate posterior (Cingp) 

Temporal (Temp) 

Inferior parietal lobule (IPL) 

Dorsal prefrontal cortex (PFCd) 

Posterior cingulate cortex (PCC) 

Medial prefrontal cortex (PFCm) 

Temporal (Temp) 

Anterior temporal (AntTemp) 

Dorsal prefrontal cortex (PFCd) 

Ventral prefrontal cortex (PFCv) 

Inferior parietal lobule (IPL) 

Retrosplenial (Rsp) 

Parahippocampal cortex (PHC) 

Temporal parietal (TempPar) 

etwork = (3-5, 60-63); Somatomotor network = (6-10, 63-67); 

lience/ Ventral attention network = (18-28, 75-87); 

Default network = (45-56, 102-113); Temporal parietal = (57, 114) 
ppendix A. Name of the ROIs in the Yeo Template 

Table 1 

Index and name of ROIs in the Yeo template ( Thomas Yeo e

right-hemispheric regions, respectively. 

Index ROI Label Index 

1 Striate cortex (Striate) 58 

2 Extra-striate cortex (ExStr) 59 

3 Striate cortex (Striate) 60 

4 Extra-striate inferior (ExStrInf) 61 

5 Extra-striate superior (ExStrSup) 62 

6 Somatomotor A (SomMotA) 63 

7 Central (Cent) 64 

8 S2 (S2) 65 

9 Insula (Ins) 66 

10 Auditory (Aud) 67 

11 Temporal occipital (TempOcc) 68 

12 Parietal occipital (ParOcc) 69 

13 Superior parietal lobule (SPL) 70 

14 Temporal occipital (TempOcc) 71 

15 Post central (PostC) 72 

16 Frontal eye fields (FEF) 73 

17 Precentral ventral (PrCv) 74 

18 Parietal operculum (ParOper) 75 

19 Precentral ventral (PrCv) 76 

20 Insula (Ins) 77 

21 Parietal medial (ParMed) 78 

22 Frontal medial (FrMed) 79 

23 Inferior parietal lobule (IPL) 80 

24 Dorsal prefrontal cortex (PFCd) 81 

25 Lateral prefrontal cortex (PFCl) 82 

26 Ventral prefrontal cortex (PFCv) 83 

27 Orbital frontal cortex (OFC) 84 

28 Medial posterior prefrontal cortex (PFCmp) 85 

29 Temporal pole (TempPole) 86 

30 Orbital frontal cortex (OFC) 87 

31 Temporal (Temp) 88 

32 Intraparietal sulcus (IPS) 89 

33 Dorsal prefrontal cortex (PFCd) 90 

34 Lateral prefrontal cortex (PFCl) 91 

35 Lateral ventral prefrontal cortex (PFClv) 92 

36 Cingulate anterior (Cinga) 93 

37 Temporal (Temp) 94 

38 Inferior parietal lobule (IPL) 95 

39 Dorsal prefrontal cortex (PFCd) 96 

40 Lateral prefrontal cortex (PFCl) 97 

41 Lateral ventral prefrontal cortex (PFClv) 98 

42 Medial posterior prefrontal cortex (PFCmp) 99 

43 Precuneus (pCun) 100 

44 Cingulate posterior (Cingp) 101 

45 Inferior parietal lobule (IPL) 102 

46 Dorsal prefrontal cortex (PFCd) 103 

47 Posterior cingulate cortex (PCC) 104 

48 Medial prefrontal cortex (PFCm) 105 

49 Temporal (Temp) 106 

50 Inferior parietal lobule (IPL) 107 

51 Dorsal prefrontal cortex (PFCd) 108 

52 Lateral prefrontal cortex (PFCl) 109 

53 Ventral prefrontal cortex (PFCv) 110 

54 Inferior parietal lobule (IPL) 111 

55 Retrosplenial (Rsp) 112 

56 Parahippocampal cortex (PHC) 113 

57 Temporal parietal (TempPar) 114 

Central visual network = (1-12, 58-59); Peripheral visual n

Dorsal attention network = (11-17, 68-74); Sa

Limbic = (29-30, 88-89); Control network = (31-44, 90-101); 
13 
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A

F

ppendix B. Visualization of selected regions of each subject 
ig. B1. Visualization of the selected regions in each subject. We randomly selected four subjects from each group. Subject # 𝑛 : 𝑛 denotes the RID in the ADNI cohort. 
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Table 2 

A performance comparison of comparative methods on ADNI dataset. Boldface 

indicates the highest value in each metric. ⋆ denotes the statistical significance 

in 𝑝 < 0 . 01 . Our proposed method (Ours) is shown significantly improved results 

compared to other methods. 

Methods AUC ACC (%) SEN (%) SPEC (%) 

SVM 0 . 5511 ± 0 . 1123 ⋆ 76 . 33 ± 8 . 75 18 . 54 ± 21 . 96 91 . 68 ± 7 . 84 
CNN 0 . 5388 ± 0 . 1233 ⋆ 55 . 63 ± 11 . 36 ⋆ 59 . 37 ± 12 . 22 48 . 39 ± 14 . 07 
SA-CNN 0 . 5766 ± 0 . 0780 ⋆ 78 . 88 ± 7 . 28 21 . 47 ± 14 . 40 𝟗𝟑 . 𝟖𝟒 ± 𝟕𝟕 . 𝟖𝟏 
LSTM-DG 0 . 6049 ± 0 . 1141 ⋆ 63 . 86 ± 9 . 69 ⋆ 68 . 60 ± 12 . 25 52 . 39 ± 23 . 16 
BrainNetCNN 0 . 7074 ± 0 . 0845 ⋆ 71 . 61 ± 8 . 65 75 . 16 ± 9 . 65 66 . 13 ± 11 . 39 
GNN 0 . 6024 ± 0 . 0801 ⋆ 59 . 59 ± 9 . 77 ⋆ 59 . 18 ± 1 . 40 64 . 40 ± 13 . 57 
GAPool 0 . 5201 ± 0 . 0689 ⋆ 50 . 66 ± 7 . 72 ⋆ 51 . 25 ± 12 . 35 50 . 76 ± 15 . 87 
Ours (Bandit) 0 . 6999 ± 0 . 0653 ⋆ 71 . 67 ± 5 . 93 𝟖𝟏 . 𝟕𝟐 ± 𝟔 . 𝟗𝟑 58 . 26 ± 11 . 01 
Ours 𝟎 . 𝟕𝟑𝟖𝟖 ± 𝟎 . 𝟎𝟕𝟎𝟖 𝟕𝟑 . 𝟕𝟐 ± 𝟕 . 𝟖𝟗 74 . 93 ± 12 . 65 72 . 85 ± 8 . 21 
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ppendix C. Additional experiments of sMCI vs. pMCI 

1. Materials and preprocessing 

1.1. ADNI cohort 

We used data from 96 subjects from the ADNI cohort (in ADNI2 and

DNI GO). Specifically, we collected a dataset comprising 76 individ-

als with stable MCI (sMCI; 42F/34M) and 20 progressive MCI (pMCI;

0F/10M) individuals. Their mean ages were 72 . 2 ± 7 . 9 and 72 . 1 ± 5 . 96 ,
espectively. Furthermore, the sMCI subjects have 27 . 99 ± 1 . 91 and the

MCI subjects have 25 . 31 ± 1 . 90 MMSE scores on average, respectively.

inally, CDR scores are 0 . 47 ± 0 . 16 and 0 . 71 ± 0 . 25 for the sMCI and the

MCI groups. From the longitudinal data, we obtained total 316 samples

252 sMCI and 64 pMCI). The images were scanned using 3.0T Philips

chieva scanners in multi-center with following protocol and parame-

ers: Repetition Time (TR) = 3000ms, Echo Time (TE) = 30ms, flip angle

 80 ◦, acquisition image size = 64 × 64 , 48 slices, 140 time points, and

 voxel thickness = 3.3mm. 

1.2. Preprocessing 

We followed the same preprocessing procedure described in our

ain manuscript. 

2. Experiments 

2.1. Comparative methods 

To demonstrate the validity of the proposed framework on the sMCI

s. pMCI diagnosis task, we exploited competing baselines used in our

MCI vs. CN diagnosis experiments, i.e., FC-SVM, CNN, SA-CNN, LSTM-

G ( Dvornek et al., 2019 ), BrainNetCNN ( Kawahara et al., 2017 ), GNN

 Parisot et al., 2018 ), GAPool ( Knyazev et al., 2019 ), and Ours (Bandit).

e also calculated the four metrics: ACC, SEN, SPE, and AUC. 

2.2. Performance comparison 

The entire experimental results of the sMCI vs. pMCI diagnosis task

s summarized in Table 2 . To be specific, the proposed framework

chieved the best accuracy ( 73 . 72 ± 7 . 89 ) and AUC ( 0 . 7388 ± 0 . 0708 ),
hereby demonstrating superiority over the competing baselines. To

emonstrate statistical significance, we performed a Wilcoxon signed-

ank test. 
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